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Introduction Results Discussion
. Previous work has supported that the Sierra Nevada * Picks of S-fast/S-slow lag times for 260 split waveforms from <+ Null (52 less than 0.5 s) and negative (16) splits were allowed, «  S(fast)/S(slow) wave tomography sl arees—asraralat e
. . . 15 events recorded at 27 seismic stations. but the coordinate system was fixed. - - -
methods effectively imaged depth of anisotropy under the
batholith has experienced crustal thlnmng by removal of the * The lag times (up to 3.25 s) from the fast (N75E polarized) and * Anisotropy depth 150-200km y 5 P by

Sierra Nevada.
 Anisotropy depth (asthenospheric) supports two
hypotheses

dense underlying root.

, , . . slow waves are recorded for each waveform pick.
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e A .so ute plate motion (APM) is thought to be the cause o o toward Isabella Anomaly.
anisotropy A
 Depth of anisotropy under the southern Sierra Nevada is 1 BN %&%
unknown from previous SKS data (B astow et al., 2007) N A ™ zﬁi&@ ) A& (a)Predicted SKS from 200 km (b) 220 km P-velocity (c) Compositional Topography
. . . 6 /@\ -120° -119° -118’ -117° -120° -119° -118° -117° -120° -119° -118’ -117°
« Suggested removal processes in the Sierra Nevada provides L0 L5 A
constraints on continental crust formation (Boyd et at., 2004)., | * -V
£
I
— ]
Average Velocity Perturbation, 55-245 km " . | * =
124 123" 122" 121" 120" _119° 1§ 117" 116" (€) NW Splits (d) SE-NW
42 38.- ~120" -119" -118"
41° 4"
° © A
s o0,
39° 39° - P
38 35 A‘A %& A » Left: SKS and S waves coming from * Top: SPE raw wavgfomg, S(fast)
_ _ SN &% o different back azimuths showing a apd S (slow) polarized in two
/o YA A& B A directional dependence. different pl.anes. but propagating in
* * 3 L A * (d): The difference between SE and the same direction
. . o) NW back azimuth * Bottom: Correlation of the same
= A raw waveform in SAC
34°F = N 34° -2 -1 0 : 2 3
124" _123° 122" _121° —120° -119° —118" —117° 116 —
S wave only
b Station—ayeragedﬂSKs? projected tc? N7§E
 Left: Arrows indicating SKS fast direction (Bastow et al., 2007) « S waves alone are
 Right: Average upper mantle velocity (Jones et al., submitted). Blue area not sufficient to find
within the box is the Isabella Anomaly depth
Methods SKS+ S waves (B) Convective Signature

 Cross-correlation of split teleseismic shear waves with

« Top: Comparisons among the SKS data, P-wave velocity and
compositional topography (Levandowski et al., 2013)

e Bottom: Cross sections of two interpretations. (A) Anisotropy caused by
absolute plate motion (APM) (B) Anisotropy caused by sinking of dense

varying back azimuth and station-event distance.

* Known fast and slow planes from previous SKS analysis

C  Right: Observed SKS rotated to root
(Bastow et al., 2007), seismic data are rotated to N75E/N15W + Both SKS and S N75E from global SKS database
. : : : : : waves to pin point (Becker et al., 2012) o0 :
Cross-correlations done with Seismic Analysis Code (SAC). depth . Top: Enlargement of the area, Conclusion

purple dots are stations with SKS
observations

« “Pauper’s Tomography”(Jones et al., 1994) to back project « APM (~WSW-ENE) dominated flow disrupted by a ~100 km

down the ray path to find depth wavelength NNE-SSW trending zone from south-central
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